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Abstract

The Y1�xBO3:Ndx nanoparticles have been prepared by a mild hydrothermal method and luminescence properties in the NIR of

Y1�xBO3:Ndx nanoparticles have been investigated. The Y1�xBO3:Ndx nanoparticles with 0–15mol% Nd
3+ were found to be

isostructural with YBO3 crystal. The preferential nucleation and growth of Y1�xBO3:Ndx nanoparticles along a certain plane can be

observed and the dopants of Nd3+ ions would help to weaken the selectivity of the growth of Y1�xBO3:Ndx nanoparticles. The

emission spectrum in the NIR of Y1�xBO3:Ndx nanoparticles consisted of a few narrow, sharp lines corresponding to the
4F3=2-

4I11=2 and
4F3=2-

4I13=2 transitions of Nd
3+ ions when pumped with 800 nm laser radiation. The luminescence intensity of

Y1�xBO3:Ndx nanoparticles increased remarkably with the increase in the doping concentration of Nd
3+ ions and reached a

maximum at approximately 10mol%.

r 2004 Elsevier Inc. All rights reserved.

Keywords: Hydrothermal; Nanoparticles; Nd3+ ions; Luminescence in the NIR
1. Introduction

During the past few years, the synthesis process and
spectroscopic properties of the lanthanide-doped nano-
particles have attracted considerable interest since they
are considered as potentially useful active components
in lamps and displays [1], lasers [2], and new optoelec-
tronic devices [3,4], etc. Various synthesis techniques of
the lanthanide-doped nanoparticles and their lumines-
cence properties have been reported previously [5–8].
Yttrium and lanthanide orthoborates have high UV

transparency and exceptional optical damage threshold,
which make them attractive for numerous practical
applications. For example, the (Y, Gd)BO3:Eu

3+

phosphors were extensively used as red phosphors for
display [9] and have been adequately investigated. The
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conventional process of preparing (Y, Gd)BO3 phos-
phors such as solid-state reaction [10,11] and flux-aided
solid-state reaction [12] involves a high temperature of
above 1000�C and a milling step, leading to a poor
crystalline integrity [11] and damaged luminescent
properties [13]. Therefore, many efforts had been made
to find novel low temperature synthetic procedures.
Wang et al. synthesized successfully non-aggregated
GdBO3:Eu

3+ particles by a mild hydrothermal method
[14]. But only submicron-sized particles could be
produced, since a relative high temperature (300�C)
was needed. Recently, Jiang et al. have prepared
YBO3:Eu

3+ nanoparticles by choosing the method of
hydrothermal homogeneous urea precipitation [15]. In
this two-step hydrothermal method, high-quality nano-
sized YBO3:Eu

3+ particles could be synthesized at very
low temperature (200�C).
The lanthanide(III)-doped nanoparticles that emit in

the near-infrared region (NIR) would be of particular
interest as active material in telecommunication
components, lasers, and polymer displays, etc. Espe-
cially when used as fluorescent label in bioassays, high
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sensitivity of detection could be achieved due to the
absence of interfering with background fluorescence by
using luminescence in the NIR. To the best of our
knowledge, only a few research works on the synthesis
process and luminescence properties of the lanthan-
ide(III)-doped nanoparticles that emit in the NIR have
been reported. The synthesis process of the lanthan-
ide(III)-doped yttrium orthoborates (YBO3) that emit in
the near-infrared has not been still investigated. Well-
crystallized YBO3 nanoparticles can be conveniently
synthesized and higher concentration of lanthanide ions
can be doped by the two-step hydrothermal method [15].
In this work, the synthesis process of Y1�xBO3:Ndx

nanoparticles by the hydrothermal method and their
spectroscopic properties in the NIR have been de-
scribed.
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Fig. 1. XRD patterns of Y1�xBO3:Ndx nanoparticles: (a) x ¼ 0; (b)
x ¼ 0:025; (c) x ¼ 0:05; (d) x ¼ 0:075; (e) x ¼ 0:10; and (f) x ¼ 0:15:
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2. Experimental

Y1�xBO3:Ndx nanoparticles were prepared according
to a literature procedure [15]. The boric acid (0.04mol/
L), urea (0.05mol/L), YNO3 � 6H2O and Nd2O3 were
dissolved in dilute HNO3, with the total concentration
of metal cation being 0.04mol/L and the initial pH value
being 4. With doping concentration ranging from 0.025
to 0.15, a series of stock solution could be prepared. A
given volume (200mL) of the stock solution was poured
into a stainless-steel autoclave (250mL) and heated at
80�C for 12 h, and subsequently heated at 230�C for
24 h. The precipitated powders were separated by
centrifugation, washed with deionized water and ethanol
for several times, then dried in an oven at about 50�C
for 30 h. For comparison, bulk YBO3:Nd

3+ was
obtained by a direct solid-state reaction from the
mixture of Y2O3, Nd2O3, and H3BO3 at 1100

�C for
10 h in air.
The phase and crystallinity of the Y1�xBO3:Ndx

nanoparticles were analyzed by X-ray diffraction
(XRD) (Philips XD98) using CuKa radiation. Transmis-
sion electronic microscopy (TEM) images were taken on
a JEM-200CX microscope operating at 160 kV. TEM
samples were prepared by applying a diluted drop of the
particles on a holey carbon-coated copper TEM grid.
The emission spectra in the NIR were recorded on a
TRIAX550 monochromator (JOBIN YVON-SPEX)
equipped with a PS/TC-1 detector (ELECTRO-OPTI-
CAL SYSTEMS INC). An 800 nm LD laser was used as
excitation source. All experiments were performed at
room temperature.
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Fig. 2. Relationship between the relative intensities of diffraction

peaks of (002) and (004) vs. (001) and the concentration of Nd3+ ion

dopant.
3. Results and discussion

Fig. 1 shows the XRD patterns of Y1�xBO3:Ndx

nanoparticles (x ¼ 0; 0.025, 0.05, 0.075, 0.10, and 0.15).
The position of diffraction peaks is in accordance with
the JCPDS card (16-0277) of YBO3 crystal, which
indicated that the Y1�xBO3:Ndx nanoparticles with
0–15mol% Nd3+ were isostructural with the YBO3
crystal. However, the relative intensities of different
peaks of YBO3 (x ¼ 0) nanoparticles prepared by the
hydrothermal method in this work were greatly different
from that of JCPDS card (16-0277). The mismatch of
relative intensity of XRD peaks can be attributed to the
preferential nucleation and growth of YBO3 nanopar-
ticles along certain plane. Wang et al. [14] and Jiang et al.
[15] have attributed the selectivity of the growth to the
hydrothermal process and synthesis temperature, re-
spectively. From Fig. 2, it can be found that the relative
intensities of diffraction peaks (002) and (004) vs. (001),
which is the strongest peak according to JCPDS card
(16-0277), decreased obviously with increase in the
doping concentration of Nd3+ ions. The relative
intensities of different peaks of Y0.85BO3:Nd0.15
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nanoparticle can be observed to be well accordant with
the JCPDS card (16-0277). Therefore, the dopants of
Nd3+ ions weaken the selectivity of the growth of
Y1�xBO3:Ndx nanoparticles. From Fig. 1 it can also be
found that the single phase of YBO3 crystal can still be
obtained even at a higher doping concentration
(15mol%) of Nd3+ ions, indicating that the Nd3+ ions
can easily substitute the Y3+ sites and form a solid
solution of (Y, Nd)BO3 crystals. The solid solution is
complete for Y1�xBO3:Ndx with 0oxo0:15:
Fig. 3 shows the TEM images of Y1�xBO3:Ndx

nanoparticles (x ¼ 0:025; 0.05, and 0.10). Flake-like
morphology with the size in the range 40–60 nm can be
Fig. 3. TEM micrographs of Y1�xBO3:Ndx nanoparticles: (a) x ¼
0:025; (b) x ¼ 0:05; (c) x ¼ 0:10:
observed, which can be attributed to the preferential
growth of the Y1�xBO3:Ndx nanoparticles along a
certain plane. The Scherrer-calculated diameter from
XRD patterns is about 30 nm, which is approximately
consistent with the particle component diameter ob-
served in the TEM images. It is obvious that the
aggregation of Y1�xBO3:Ndx nanoparticles did not
occur during the sample preparation. From Fig. 3 it
can also be found that the diameter of Y1�xBO3:Ndx

nanoparticles became slightly smaller with increase in
the concentration of Nd3+ dopant, which also indicated
that the substitution of Y3+ ions by Nd3+ ions
weakened the preferential nucleation and growth of
Y1�xBO3:Ndx crystals.
Fig. 4 shows the emission spectrum in the NIR of the

10mol% Nd3+-doped nanoparticles (excited at
800 nm). The emission peaks that were observed around
1050 and 1320 nm can be attributed to the 4F3=2-

4I11=2
and 4F3=2-

4I13=2 transitions of Nd
3+ ions, respectively.

In comparison with the other Nd3+-doped nanoparti-
cles [6,16], the emission bands in the NIR of the Nd3+-
doped Y1�xBO3:Ndx nanoparticles can be observed to
be more narrow and sharp. Two emission peaks
corresponding to the 4F3=2-

4I11=2 transitions can be
observed. This phenomenon could be attributed to the
crystal structure of Y1�xBO3:Ndx nanoparticles. Some
research results on the crystal structure of YBO3 have
been reported [17–20] and now the pseudo-vaterite with
space group P63/m is widely accepted [20]. The Y

3+ ions
are eightfold coordinated by oxygen atoms in the crystal
structure of YBO3. Two types of environments for Y

3+

ions were observed due to the delocalization of oxygen
atoms [20]. The Nd3+ ions substitute generally the Y3+

sites in the Y1�xBO3:Ndx crystal and thus there are two
types of environments for Nd3+ ions. For both the sites
having the C3 symmetry, Nd

3+ ions lying in the two
sites have a similar luminescence behavior. Therefore,
the emission bands of Y1�xBO3:Ndx nanoparticles were
not broadened and maintained the typical sharp, narrow
spectra lines of Nd3+ ions. This kind of spectra
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Fig. 4. Emission spectrum in the NIR of Y0.9BO3:Nd0.1 nanoparticles.
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characteristic makes them an ideal biological label
because high resolution could be achieved when
performing fluorescence assay.
Fig. 5 shows the dependence of the luminescence

intensity of Y1�xBO3:Ndx nanoparticles and bulk
samples on the doping concentration of Nd3+ ions by
monitoring the emission of 4F3=2-

4I11=2 transition at
1050 nm. The luminescence intensity of bulk
YBO3:Nd

3+ decreases with increasing concentration of
Nd3+ ion dopant. For nanoparticles, the luminescence
intensity increased with the increase in dopant concen-
tration and reached a maximum at 10mol% Nd3+

doping concentration. Then, the luminescence intensity
decreased significantly at 15mol% Nd3+ doping con-
centrations due to concentration quenching. It is
obvious that the nanosized particles resulted in the
delay in concentration quenching. The concentration
quenching of the rare-earth ions-doped crystals can
generally be attributed to the possible non-radiative
transfer that resulted from resonance energy transfer
between neighboring rare earth ions. The concentration
quenching is a common loss mechanism for active laser
centers. This phenomenon, however, would be expected
to occur at much lower concentrations. In Nd:YAG
single crystals, for example, concentrations greater than
1wt% show a loss of signal. The concentration
quenching can be suppressed by providing specific
structural units in the host lattice, thereby separating
the Nd3+ ions. Bondar et al. reported suppressed
concentration quenching with a neodymium-doped
pentaphosphate single crystal [21]. The phosphates
may act as spacers between Nd3+ ions, so concentration
quenching occurs at a higher concentration of Nd3+

ions. It is generally observed that glasses can be doped
with higher levels of Nd3+ ions than single crystals.
Koechner reported that Nd3+ ions doped in glass are
typically used at levels of about 3wt% [22]. The increase
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Fig. 5. Relationship between the luminescence intensity and the

concentration of Nd3+ ion dopant for Y1�xBO3:Ndx nanoparticles

and bulk samples.
of dopant concentration could be due to the amorphous
structure of the glass. In a crystal, the Nd3+ ions will be
located at specific substitutional sites and will have a
tendency to cluster. In the amorphous structure of glass,
however, Nd3+ ions can undergo a more random
substitution without causing much strain. Bender et al.
pointed out that another mechanism of the delay in
concentration quenching could be due to the nanosized
particles [23]. It is speculated that Nd3+ ions on the
surface of the nanoparticle may have luminescence
properties different from those in the bulk. It is known
that ions on the surface do not have a full coordination
sphere, and this leads to surface atoms having a higher
potential energy. As nanoparticles have a higher
proportion of surface ions to bulk ions than do larger
particles, more Nd3+ ions would reside at the surface of
a nanoparticle. The incomplete coordination of the
surface ions could result in more radiative decay rather
than nonradiative decay of Nd3+ ions [23]. On the other
hand, since clusters of Nd3+ ions and resonance energy
transfer only occur within one particle due to the
hindrance by the particle boundary, the clusters of
Nd3+ ions and resonance energy transfer would
decrease with decreasing diameter of Y1�xBO3:Ndx

nanoparticles. Therefore, the concentration quenching
generally occurs at higher dopant concentration of
Nd3+ ions in smaller nanoparticles in comparison with
the bulk sample. Thus, a desirable characteristic of
Y1�xBO3:Ndx nanoparticles could be obtained by
doping more Nd3+ ions into the host YBO3 nanopar-
ticles so that they were of great benefit to their practical
uses.
4. Conclusion

Luminescent Y1�xBO3:Ndx nanoparticles were pre-
pared by a mild hydrothermal method in the presence of
urea, and a well-crystallized hexagonal phase could be
obtained at low temperature. The preferential nuclea-
tion and growth of Y1�xBO3:Ndx nanoparticles along a
certain plane have been observed and the dopants of
Nd3+ ions would weaken the selectivity of the growth of
Y1�xBO3:Ndx nanoparticles. The emission spectrum in
the NIR of Y1�xBO3:Ndx nanoparticles consisted of a
few narrow, sharp lines corresponding to the
4F3=2-

4I11=2 and
4F3=2-

4I13=2 transitions of Nd
3+ ions.

The luminescence intensity of Y1�xBO3:Ndx nanoparti-
cles increased remarkably with increase in the doping
concentration of Nd3+ ions, and reached a maximum at
approximately 10mol%. The emission bands of
Y1�xBO3:Ndx nanoparticles maintained the typical
sharp, narrow spectra lines of Nd3+ ions. This kind of
spectra characteristic makes them an ideal fluorescence
label in the NIR for bioassays and biosensors.
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